
Next generation
client-side attacks

1Ernst & Young Next generation client-side attacks

Enterprises should deploy reasonable
and responsible security controls,
including:
• Deploying a standardized version of a

current internet browser.

• Developing a browser security policy
which includes approved usage,
pluggable protocol handlers and
integrated applications.

• Updating browser software and
associated application updates in the
patch management process.

• Egressing application control solutions
to monitor and fi lter internet-bound
requests.

• Educating stakeholders by facilitating
user awareness trainings.

• Developing secure code reviews and
security application testing practices
that validate security controls.

The web browser has become an
incredibly complex piece of software. From
ensuring the successful rendering of web
applications, to executing complex sets of
dynamic instructions, to running multiple
instances of plug-in code, the complexity
in the design of a typical web browser has
skyrocketed. Through the proliferation of
web applications on the average user’s
desktop, the web browser has taken on
the complexity traditionally attributed
to the operating system layer. It is this
increase in complexity that has made the
web browser a ripe avenue of attack by
malicious attackers. Given this situation,
organizations and individuals often rely on
browser security controls to help protect
the integrity and confi dentiality of their
data. However, browser controls today
provide insuffi cient protection against
certain types of attack vectors.

Operating systems are designed with anti-
malware, antivirus and system controls
to prevent or mitigate malicious code.
The web browser has not kept pace with
modern security controls of the desktop
operating system. Running updated versions
of web browsers and leveraging the latest
security controls are leading practices rarely
followed. According to netmarketshare.
com, an internet technologies usage site,
the combined market share of Internet
Explorer 6 (released circa 2000) and Internet
Explorer 7 (circa 2006) is over 28%. Cyber
criminals are well aware of the shortcomings
in internet browsers and are engineering
new attack classes that exploit the browser’s
fundamental design framework. In short,
these new attack vectors will not be detected
by present-day security controls.

In addition to the known threats from
legacy internet browsers, there are many
emerging threats that are challenging IT
organizations and security professionals.
Attacks that impersonate well-known sites
are an understood threat; however, cyber
criminals have found new techniques, such
as “tabnabbing,” that exploit the way people
process information visually.

Imagine opening your online banking site
in one tab of your web browser, a blog in
another and a news site in a third tab. When
you return to the tab of the blog you were
reading, your personal email site appears –
or so you think. Tabnabbing, a new phishing
attack, has just stolen your username and
password. Tabnabbing exploits a site’s ability
to rewrite a browser’s tab and page details
after a page has been loaded. Once a user
has multiple tabs open – after a period of
inactivity – the malicious script will rewrite
the page contents, the icon next to the
page title, and the page title to appear as a
password-restricted site such as an email or
banking application. Tabnabbing is merely
one of many next generation browser-based
attack vectors.

While tabnabbing exploits a user’s attention
to detail (or lack thereof), “clickjacking”
exploits the way browsers render HTML
and poses the greatest unchecked client-
side threat. Clickjacking places an invisible
web page over the top of a visible page,
effectively stealing the click intended for
objects on the lower layer. Without proper
application controls, the impact of a single
click can be devastating. These attacks
are not detected by off-the-shelf scanning
software. The out-of-the-box security
design of modern web browsers is entirely
untenable. While web browsers are not
stopping the most cutting-edge attacks,
enterprises are continuing to operate on
legacy browser technology. Organizations
do not have the luxury of accepting the
inadequate default browser security controls.
One cannot expect an information worker to
be accountable for thwarting every possible
attack that seeks to exploit their trust or the
trust of their computer.

In the following pages, we analyze some of
the more challenging attack techniques that
target the browser, provide proof-of-concept
exploits and offer suggestions to mitigate
risk.

Executive summary

2 Ernst & Young Next generation client-side attacks

Tabnabbing attacks

In summary
• Tabnabbing is a new phishing technique

that takes advantage of a website’s
ability (via JavaScript) to rewrite tab
and page details after a page has been
loaded.

• Once a user has multiple tabs open, and
after a period of inactivity, the malicious
script will rewrite the page contents,
tab icon and tab title to appear as a
password-restricted site, such as an
email or banking application.

• This technique relies upon the brain’s
tendency to use visual cues such as
icons – if the user does not re-evaluate
the address fi eld in the browser, he or
she will likely enter their credentials into
the phishing site.

Early generation browsers had a single window for each website a user visited. Tabbed
browsing is the ability to maintain connections to multiple websites or web applications
within a single browser window, similar to running multiple applications on a desktop system.
Individuals rely on visual indicators such as icons and tab titles to identify which site is loaded
into a tab. Attackers have found an attack technique which is part of the web browser’s normal
operation and exploits the use of these visual cues.

Technical details
Our technical example employs a script called bgattack.js (fi gure 1) which can be embedded
within a web page. The script will detect when a user has browsed away from the tab where
the script is running and set a timer to a confi gurable number seconds. Once the timer has
expired, bgattack.js will rewrite the page contents, favorite icon and tab title to the predefi ned
site details, as in our example Gmail.

Figure 1 - Tabnabbing example code

3Ernst & Young Next generation client-side attacks

The JavaScript in fi gure 1 illustrates the more interesting parts of bgattack.js. The example
script is broken down into four main functions, including a timer, content clearing, content
retrieval and page rewriting.

In our example, the timer in the main function is set to fi ve seconds of inactivity, determined
by the JavaScript window.onfocus event (line 4). If the user returns their focus to the tab
containing the malicious script, the timer resets (line 6). This ensures the user does not see
the page content change while they are actively viewing the page. Once the timer expires,
the tab icon is removed and the target phishing site’s icon (stored as fav.ico) is retrieved.
Finally, the page contents are rewritten using a “createShield” function (not shown). In the
“changeItUp” function (line 34), we see the phished site is Gmail and the favorite icon is taken
directly from Google (lines 36-37). It’s also worth noting that the user redirects to the valid
Gmail site with an onClick event on the submit button. This ensures the attack is transparent
to the victim.

In fi gure 2 we see the user has visited the attacker’s site in one tab, a news site in another,
their banking site in a third and Ernst & Young in the fourth tab.

Figure 3 shows that while the victim was browsing other sites, blog.attack.com executed the
script to rewrite the tab title and favorite icon to Gmail.com.

Figure 2 - Multiple tabs

Figure 3 - Tab rewritten

Tabnabbing attacks

4 Ernst & Young Next generation client-side attacks

Tabnabbing attacks

Finally, when the user returns to their fi rst tab in fi gure 4, the phishing content is displayed.
Notice that while the page contents, tab title and favorite icon have been changed, the URL is
exactly the same (blog.attack.com).

Figure 4 - Content spoofed page

Mitigating risk
The document object model (DOM) enables developers to write dynamic code that
updates content continuously. This behavior is unlikely to change in future browser
versions. Enterprises can mitigate risk by leveraging the security zone model in Internet
Explorer. All sites with a valid business purpose should be listed in the “trusted sites”
while disabling JavaScript for sites in the “internet” zone. Additionally, browser plug-ins
are available to alert users to potentially malicious sites.

In the Mozilla browser, using Firefox plug-ins such as NoScript can mitigate scripted
attacks. Organizations may leverage internal training to educate users about the risks
associated with browsing the internet. However, the simplest solution is to stay alert
while browsing by practicing “situational awareness.”

5Ernst & Young Next generation client-side attacks

Clickjacking attacks

In summary
• Clickjacking could more appropriately

be named “clicktheft.” The attack is
designed to steal a user’s click attempts
either through an embedded JavaScript-
triggered event or, without scripting,
through HTML and CSS tricks.

• Both techniques depend on the
attacker’s ability to overlay a link
transparently over a page through an
IFRAME.

• In our example, we demonstrate a simple
clickjacking attack without leveraging
JavaScript, which perpetrates click fraud
on a pay-per-click advertisement.

As web technologies evolved, browsers were tasked with rendering dynamic content that
included code from other sources at various trust levels. In an effort to isolate external
content, the IFRAME technology integrated into browsers. IFRAME seamlessly integrates third-
party content into the DOM, a hierarchical, dynamic data structure in the browser.

Technical details
There are several elements that make clickjacking attacks dangerous and enable these attacks
to go unnoticed by the victim. In our example, we use the CSS z-index property, or negative
top position, to set the HTML elements on top of one another, similar to a stack of papers on
a desk. Opacity is the CSS property that will render the content in different levels of visibility,
from opaque to transparent. In fi gure 6 on the following page, you can see the example page
with the opacity set to 0. To demonstrate that the IFRAME is present, we set the opacity to
1 in fi gure 7. Finally, and most critically, IFRAMEs enable content from another domain to
render in an HTML element.

In our code example (fi gure 5), we use three CSS classes to execute our attack. The fi rst class,
clickJack (line 4), defi nes the area of our page where we want our victim to click. Notice this
class is applied in a span tag – essentially creating a fake button. The z-index property in the
CSS class sets the button behind the transparent part of the page where we want our victim
to click. Our next class is referenced as “attackTarget” (line 13) – the destination of the user’s
click. The only value set is the opacity to 0 – forcing the IFRAME content to be completely
transparent. In the fi nal CSS class, we defi ne our page elements.

Figure 5 - Source HTML

6 Ernst & Young Next generation client-side attacks

Clickjacking attacks

When the victim clicks on the span image (“download our clickjacking document”), they are in
actuality clicking on the IFRAME (CNET) a layer above, invisible to the eye. When an attacker
can employ JavaScript, their attacks can become even more sophisticated. Using the onFocus
JavaScript triggered event, an attacker can steal keystrokes. Each stolen keystroke is directed
into the invisible IFRAME. In fi gure 7, we reveal the attack target by increasing the opacity for
demonstration purposes.

Figure 6 – Invisible IFRAME

7Ernst & Young Next generation client-side attacks

Clickjacking attacks

A browser security policy could mitigate this attack by disallowing invisible IFRAMEs, changing
their opacity to something slightly visible (perhaps 10%) or requiring additional approval
from the user to render them. While this control would be an unpopular idea with internet
advertisers, it would provide users the ability to approve third-party content before it was
executed in the DOM.

Figure 7 - Attack target visible

Mitigating risk
Black box testing and static code reviews must check for “framebusting” code and report
any lack of clickjacking protections as a security defect.

The latest research out of Stanford University offers software developers a script that
can be implemented in the web application (fi gure 8) that is effective in stopping known
clickjacking attack vectors. Essentially, it works by using the style element to hide all page
contents if the page is within an IFRAME or JavaScript is disabled. If framed inside an
IFRAME object, the JavaScript will attempt to break out of the IFRAME; if the breakout
attempt is blocked, it will fail in a secure manner by not displaying content. In this case,
the user will see a grayed-out page without any content.

Figure 8 - Anti-clickjacking script

8 Ernst & Young Next generation client-side attacks

Blended attacks

In summary
• Internet browsers have essentially

become a modular framework for
interacting with web applications – the
modern desktop.

• Given the number of JavaScript widgets,
browser helper objects (BHOs) and
extended pluggable protocol handlers, it
is no wonder that client-side attacks are
growing in popularity.

• The past 24 months have given rise
to the blended attacks – essentially,
browsers acting as a proxy for malicious
code to third party or non-web based
applications.

• Active-X, Microsoft’s Object Linking and
Embedding (OLE) framework, has been a
desirable target for malicious individuals
given its ability to interact with operating
systems resources – something a browser
should never be able to do.

• Today, Adobe’s integrated browser
applications are drawing more attention
of the modern cyber criminal – according
to the National Vulnerability Database,
88 security vulnerabilities have been
reported in Adobe Acrobat since January
2009, all CERT rated with a medium or
high severity risk assessment.

• In 2009, Adobe PDF exploits accounted
for 80% of all web-based exploits.

As web technologies evolve, browsers have been updated to handle a vast number of default
actions based on the content the browser is processing. The modern web browser is tightly
integrated with desktop applications to extend the capabilities of web applications. This
integration has essentially led to attackers leveraging the browser as a conduit, giving rise to
blended attacks.

Technical details
Pluggable protocol handlers enable the browser to enjoy tight application integration. When a
user clicks on a “mailto:” link and their email program is launched, a pluggable protocol handler
was the link between the browser and the email application. A browser plug-in is an add-on
piece of software that extends the capabilities of your browser to enable users to perform
additional activities such as watch videos or run Java applets. In fi gure 9 below, clicking a
link in Internet Explorer launches the Adobe PDF Reader within the browser. Any vulnerability
within Adobe PDF Reader may be exploited through the browser acting as a proxy.

Figure 9 – PDF Internet Explorer pluggable protocol handler

By allowing the browser to communicate with other applications, it has become a conduit for
malicious attack traffi c. The anatomy of our blended attack vector example is: 1) An individual
visits a website containing links to a PDF document; 2) The individual clicks on a PDF-linked
document while the browser detects a MIME type of “Application/PDF”; 3) The Adobe PDF
Reader browser plug-in is launched to render the document in the browser; 4) The browser’s
protocol handler detects JavaScript and executes all JavaScript-related calls and functions.
The attack succeeds.While this may seem diffi cult to execute, this is a common attack path.
Cyber criminals are known to track their rate of infection. According to a Trusteer Research
sample of 2.5 million users, 80% of all internet-connected systems were running outdated/
unpatched versions of Adobe Acrobat and Flash – applications that are tightly integrated into
web browsers.

Mitigating risk
Limit your risk profi le by removing browser helper objects and unregister unnecessary
pluggable protocol handlers. Enterprises can mitigate a greater amount of risk by creating
a secured browser platform and route all outbound internet traffi c through a proxy server
that checks to verify that all user-agents match the secure browser standard.

In the short term, IT professionals can limit their user’s attack profi le by regularly
updating their Adobe products, such as Flash/Acrobat, and running on the latest browser
platforms. Alternatively, one can uninstall Flash and use an alternative PDF reader with
JavaScript rendering disabled.

9Ernst & Young Next generation client-side attacks

DOM attacks

In summary
• In June 2010, two major DOM-based

XSS vulnerabilities were released: one
in Yahoo’s web mail and another in the
popular Dojo AJAX library.

• The Dojo libraries are leveraged by
thousands of websites across the
internet. In addition to demonstrating
the necessity to review third-party
code, a more salient point should be
noted: DOM-based XSS attacks pose a
monumental threat to online security.

• In large web applications, the DOM
is assembled dynamically by tens or
hundreds of source scripts frequently
pulling third-party web widgets or other
externally hosted content.

• Web widgets are pieces of web code
such as JavaScript, Flash, Silverlight or
other content developed by a vendor or
partner and typically integrated directly
from an externally-hosted location into
the user’s browser.

• The danger is in the fact that the web
widgets can be granted the same access
rights as the primary hosting domain.

The document object model (DOM), a hierarchical, dynamic data structure in the browser,
was designed to be dynamically updated after it has been loaded into the browser. According
to statistics collected by the Web Application Security Consortium, cross-site scripting (XSS)
attacks comprise 39% of all web-based attacks. DOM-based XSS is different from stored
or refl ected XSS because it executes within the browser context without necessarily being
returned to the server. Due to the dynamically updateable nature of the browser DOM, it is
a challenge to differentiate a malicious script from a valid one. In many cases, the browser’s
security controls are the only line of defense against DOM-based XSS.

Technical details
While stored and persistent XSS is a major security issue, DOM-based XSS is the most
pertinent to browser security for multiple reasons. In DOM-based XSS, the application is
already loaded into the browser before the XSS event is triggered. While the page is loaded,
content is fetched from a third-party source to update the DOM. JavaScript functions such as
eval() and innerHtml() execute the payload within the DOM. Oftentimes, the XSS is injected
to the fi rst-party domain’s context. In short, if the external content is sourced from oblivious.
com to securesite.com, securesite.com has just inherited the vulnerability from oblivious.com.
AJAX applications are especially susceptible due to their asynchronous nature and heavy
reliance on technologies such as JSON.

Mitigating risk
It is remarkable to think browsers are eighth or ninth generation, yet our only options
with JavaScript are enabled or disabled without employing third-party plug-ins. Browser
vendors need to provide the functionality to specify domains that can run scripts while
denying all others. This should be built in to the browser without any form of plug-in.
This type of content control is not without precedent – users and organizations have long
been able to regulate setting cookies. Granular scripting controls are essential in moving
toward a more secure operating environment.

Widgets and third-party JavaScript can populate the DOM directly, and therefore it is not
passed through the fi rst-party domain server – the browser is the fi rst and only line of
defense against malicious code. Disabling JavaScript for “internet zone” sites or, in the
Mozilla browser, utilizing Firefox plug-ins such as NoScript can mitigate scripted attacks.

10 Ernst & Young Next generation client-side attacks

SSL/TLS encryption

In summary
• Since its development by Netscape in the

early 1990s, SSL has been the trusted
technology for providing transport
layer encryption to client/server web
applications.

• Technology has moved forward and
the very integrity of SSL/TLS has been
called into question.

Securing web application data in transit has traditionally relied on secure
sockets layer (SSL) and transport layer security (TLS) technologies. These
technologies ensure that data between the web browser and the destination
web application are encrypted and only known to the two parties. Browsers
limited their trust to a handful of organizations.

Technical details
TLS and SSL are routinely used to provide confi dentiality, authentication and integrity
between communicating parties. At one time, only a handful of certifi cate authorities were
in existence, of which the browser trusted less than 10. Now, through certifi cate authorities
and their delegates, Internet Explorer trusts over 600 certifi cate issuers by default – some of
which are government agencies.

This expanded circle leaves organizations exposed to the possibility that a wide number of
both state and non-state actors could be performing man-in-the-middle (MITM) attacks on
their HTTP traffi c. Some of the more interesting groups on the list of trusted parties include:
Ford, Google, a telecommunications company owned by the United Arab Emirates called
Etisalat and the US Department of Homeland Security.

Web browsers do not have an option for revoking certifi cate authorities. This means that any
SSL user can have their traffi c decrypted and re-encrypted without the user’s permission or
knowledge by any certifi cate authority or certifi cate authority delegate. This is not limited to
web browsers; there are many other web-based applications that rely on SSL, including mail
clients and SSL VPN remote access systems.

Mitigating risk
Enterprises can mitigate risk by limiting the certifi cate authorities that the browser trusts
by default. On Windows systems, the Internet Explorer confi guration can be locked so
the user is not able to modify these settings. Organizations should consider alternative
protocols such as IPsec for remote access connectivity.

 CA MITM

User Unencrypted HTTPS application

11Ernst & Young Next generation client-side attacks

Conclusion — mitigating risk

Web browsers have become the modern desktop operating system while security controls
are not providing appropriate protection against next generation attack vectors. Therefore,
it is the charge of organizations to institutionalize security programs that mitigate their
information security risk. In this next generation browser-based operating environment,
security controls must be robust enough to thwart the rapidly changing threat landscape.

Enterprises must adopt practices that test for and actively mitigate emerging browser-
based threats. Organizations require controls to limit scripting based on source domain,
sandbox integrated applications and approve or deny third-party code inclusions in the DOM.
Application security programs which include vulnerability scanning and source code review
are incomplete without validating application controls that stop attacks such as clickjacking.
Consider deploying emerging technologies such as application control solutions. These
technologies monitor internet-bound traffi c, adding an extra level of protection external to the
browser. Finally, consider leveraging hardware or cloud-based content solutions to approve
specifi c functionality and third-party applications.

Summary of recommendations
• Deploy, harden and maintain a modern, standardized internet browser.

• Develop secure code review and security application testing practices which include
testing for clickjacking and code inclusion protections.

• Implement an organization-wide browser security policy and acceptable use policy.

• Develop user training which includes advisable internet browsing practices and
restrictions.

• Deploy security browser plug-ins such as NoScript (Firefox) or safe site plug-ins (Internet
Explorer and Firefox).

• Regularly patch integrated applications and browser plug-ins such as Adobe PDF Reader.

• Leverage application control solutions. Both cloud-based and traditional appliance vendors
have solutions to mitigate Web 2.0 specifi c attack vectors.

• Monitor all outbound internet traffi c through a proxy denying all browsers that do not
meet the browser’s security standard.

For more information
Josh Lemos
Ernst & Young

Offi ce: +1 415 894 8953
Email: josh.lemos@ey.com

12 Ernst & Young Next generation client-side attacks

Notes

13Ernst & Young Next generation client-side attacks

Ernst & Young

Assurance | Tax | Transactions | Advisory

About Ernst & Young
Ernst & Young is a global leader in assurance, tax,
transaction and advisory services. Worldwide,
our 141,000 people are united by our shared
values and an unwavering commitment to quality.
We make a difference by helping our people, our
clients and our wider communities achieve their
potential.

Ernst & Young refers to the global organization of
member firms of Ernst & Young Global Limited,
each of which is a separate legal entity. Ernst &
Young Global Limited, a UK company limited by
guarantee, does not provide services to clients. For
more information about our organization, please
visit www.ey.com

© 2010 Ernst & Young LLP.
All Rights Reserved.

1012-1212546_SF

